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Abstract—The transport equation appropriate for radiant heat-transfer calculations and including the
effects of photon scattering is discussed. It is shown that for low temperatures and photon energies
(<0-5 MeV) the scattering of photons from a Maxwellian gas of free electrons can be described by a
relatively simple second order differential operator. A diffusion approximation, employing the same
description of scattering, is derived from the transport equation. The qualitative aspects of the solution
of both the transport and diffusion equations are discussed in the limit of zero electron temperature. In
particular, it is shown that in this limit this description of scattering gives the proper behavior of only a
decrease in photon frequency upon scattering. This is in contrast to previous attempts to represent the
scattering process by a differential operator which led to the physically incorrect result of some increase in
frequency due to scattering from electrons at rest.

NOMENCLATURE

B, source due to spontaneous emission;

¢, speed of light;

D, diffusion coefficient ;

e, electronic charge;

h, Planck’s constant;

I,  specific intensity;

I,, zeroth angular moment of specific
intensity ;

I,, first angular moment of specific in-
tensity ;

k, Boltzmann’s constant;

m, electron mass;

n, unit outward normal vector;

N,, electron density;

r, spatial coordinate;

ro, classical electron radius;

t, time;

T, temperature;

x, dimensionless wavelength.
Greek symbols

o, dimensionless temperature;

y,  dimensionless frequency;

I',  incoming intensity distribution;

A, initial intensity distribution;

U,  absorption coefficient ;
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Uz, absorption coefficient modified to in-
clude induced emission;

U, Thomson scattering coefficient ;

v, frequency;

o, doubledifferential scattering coefficient ;

17,, hydrodynamic time scale;

1, radiation time scale;

€2, unit vector in direction of photon travel.

1. INTRODUCTION

IN THIS paper a relatively simple treatment of
photon scattering in the transport equation
appropriate for radiant heat-transfer calcula-
tions is presented. In particular the description
of photon scattering from a Maxwellian gas of
free electrons is considered in detail within the
radiative transfer context. The most compre-
hensive treatment of this problem to date is
due to Fraser [1] and we shall draw heavily
upon his ideas. However, it will be shown that
Fraser’s analysis can be carried further and
the resulting description of scattering is both
simpler and qualitatively more accurate than
Fraser’s result. Following a brief review of
work done to date on this scattering problem,
we shall be able to state more explicitly the
contribution of this paper.



82 G. C. POMRANING

In the polarization independent approxima-
tion the equation of transfer for the specific
intensity Ir, v, £, t) of photons can be written
quite generally as [2]
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where, for notational simplicity, we have dropped
the arguments r and ¢ in the specific intensity
I, v, 82, 1) on the right-hand side of this equa-
tion. Here r, v, 2, and t are the spatial, frequency,
angular, and temporal coordinates, respectively,
¢ is the speed of light, B(v) is the source term
due to spontaneous emission, u(v) is the
absorption coefficient suitably modified for
induced emission, and o (v — v, 2. 2) is the
double differential scattering coefficient (cross
section). Although not explicitly shown, B,
i, and o, are in general functions of both r and
t. We assume, however, that B(v) and p(v)
are independent of the direction £ of travel of
the photon, and, as shown, that s (v' - v, 2" . Q)
is only a function of the scattering angle rather
than @ and @’ separately. For an observer at
rest with respect to the medium this implies
isotropic matter, i.e. matter with no preferen-
tial direction. For an observer moving with
speed v with respect to the medium, this also
implies the neglect of terms of order v/c [1].
If local thermodynamic equilibrium can be

assumed, then B(v) is the Planck function
2hv®

B(y) = —- (T = )71, @

and
= ol — e, ()

where p, is the absorption coefficient appro-
priate to thermodynamic equilibrium and the
exponential factor is the effective decrease in
absorption due to stimulated emission. Here
T = T(r,t) is the local temperature of the
medium. Stimulated scattering is described by
the quadratic terms in the intensity in equation
(1). The factor v/v' in the inscattering term
accounts for the fact that the scattering coefficient
is defined relative to a photon density in phase
space whereas the intensity I is an energy
density. The only significant approximation
we have made in writing equation (1), other
than the inherent approximation that photon
transport can be described by a classical
equation of transfer, is that polarization effects
need not be taken into account. If the scattering
interaction is between photons and free elec-
trons, analytical evidence suggests that, as far
as energy transfer is concerned, this approxima-
tion introduces a very small error [ 3]. Of course,
if one is specifically interested in polarization
effects, equation (1) is not applicable.

In the case of photon scattering from free
electrons at rest, the scattering interaction is
described by the well known Klein-Nishina
formula [4]

ofv—v,u = Ni} (1 e )[1 +9(1 — @] ?

e ra-p }
1+ A0 + 91 - W]
, v
xé(v I +y(1-—,u))’ 4)
where N, is the electron density, y = hv/mc?
(h = Planck’s constant and mec? is the rest

energy of the electron), r, = e?/mc? is the
classical electron radius, and d(z) is the Dirac
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delta function. The case of scattering from a
moving clectron can be treated by using
equation (4) in conjunction with a Loréntz
transformation of equation (1). Finally, the
case of scattering from a distribution of moving
electrons can be treated by averaging the Lorentz
transformed equation for a particular velocity
over the velocity distribution of the electrons.
This procedure leads to an expression for the
scattering coefficient o (v — v,y and, for a
Maxwellian electron distribution, was initially
carried out by Dirac [5] and later refined by
Edmonds [6]. However, the result is algebraic-
ally complex and can only be expressed relatively
simply as a power series in (kT/mc?)?, where T
is the electron temperature (k is Boltzmann’s
constant).

Because of this complexity, one is led to
seek a simpler description of photon scattering
from electrons in the equation of radiative
transfer. The first step in this direction was
taken by Chandrasekhar [7] who treated,
within the context of a specific problem, the
case of scattering from electrons at rest. The
essential idea of Chandrasekhar was to expand
I(r, v, 2/ t) in the scattering terms of equation
(1) in a power series about v' = v and carry
only zeroth and first derivative terms. This
procedure, which is correct to order y = hv/mc?,
transforms the integral operator in frequency
into a first order differential operator and is
equivalent fo the “Fermi Age” approximation
in neutron transport theory [8]. However, the
work of Chandrasekhar lacked generality since
it treated the case of zero electron temperature
and dilute radiation (the non-linear induced
scattering terms were neglected). Further, an
approximation to the Klein-Nishina formula
given by

v ) = 25y Y
oy =V, 1) %Nercé(v 1+}’(1—y)>’ )

was used in this work. In addition to Chan-
drasekhar, several other authors [9-12] have

used this procedure, or slight modifications of
it, to compute changes in the spectral distribu-
tion of radiation due to scattering from elec-
trons at rest. All have found a physically incorrect
behavior, namely a slight increase in frequency
for some photons upon scattering. This error
is clearly introduced by making use of the
truncated Taylor series expansion since the
more correct integral operator will not display
this incorrect behavior.

This procedure of Chandrasekhar has recently
been generalized by Fraser [1] to include both
the effects of a non-zero electron temperature
and induced scattering effects. Further, Fraser
used the correct Klein-Nishina scattering co-
efficient, equation (4), as the rest frame descrip-
tion. Fraser’s result is an equation of transfer
correct to order y = hvy/mc?® and a = kT/mc?
with scattering represented by a second order
differential operator. Since mc? ~ 0-51 meV,
this equation should be quite accurate for
most problems of interest. However, Fraser’s
formulation still suffers from the defect that
in the limit of zero electron temperature it also
gives the incorrect result of some increase in
photon frequency upon scattering [13].

With this background discussion we can now
state explicitly the content of the present paper.
We shall show that Fraser’s equation of
transfer can be simplified without invoking
any assumptions other than those already
contained in his result, Further, we shall discuss
the available analytic evidence which indicates
that in the limit of zero electron temperature
this simplified equation of transfer does not
give the incorrect behavior of a frequency
increase upon scattering. We shall prove this
result in some degree of generality without
reference to any specific problem. We will also
derive the P — 1 (diffusion) approximation,
equivalent to the two point Gauss quadrature
method often used in analytic work in planar and
spherical geometries [14], to the simplified
transport equation. We shall show that this
equation also gives the proper behavior in the
limit of zero electron temperature.
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2. EQUATION OF TRANSFER
Fraser [1] has shown that an expansion of
equation (1) to first order in y = hv/mc? and
@ = kT/mc? in the case of photon scattering
from a Maxwellian gas of free electrons at
temperature T yields
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where u, = 8nN,r3/3 is the Thomson scattering
coefficient, P {z) is the nth Legendre polynomial,
and the operators S, are defined as
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Since equation (6) is the lowest order description,

in ¢ and y, of deviations from conservative
Thomson scattering, it can be simplified without
mtroducing any further approximations.

A straightforward way to effect this simpli-
fication is to consider equation (6) projected onto
the basis elements of a spherical harmonic
function space. We shall follow the vectorial
method introduced in neutron transport theory.
Since these spherical harmonic equations are
only an intermediate result, we shall omit the
details of their derivation, referring the interested
reader to the book by Davison [15]. If for
simplicity we momentarily neglect the induced
scattering (non-linear) terms in equation (6),
the result is
1aJ,

c 3 T VoV T ulJo — 4nB)
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Uy -V, J; =0, (13)

U, -V,J, =0, (14)

¢
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In these equations the vector U is in the direc-
tion £2 and has an arbitrary magnitude U.
The functions J, are defined as

Z A LoV, Y, (82),  (16)

m=—n

U'l
b

where the I,,(r, v, t} are the coefficients of an
expansion of the specific intensity in surface
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harmonics according to

Ir,v,Q2,1) = 4—1n z ZA,....L.M(L V,1) Yon(£2).

n=0 m=-n
(17

Here the surface harmonics are defined in the
usual way:
Y,(R) = P (cos ) ™, (18)

where the PT(z) are the associated Legendre
functions and the constants A,, are normaliza-
tion coefficients

Apy = 4] | dQY, (@)Y}, ()]
4n

_ @2n +1)(n - |m)!

o+ ]! (19)

with the asterisk on Y,,(£2) indicating the com-
plex conjugate. Due to the biorthogonality
relationship between the surface harmonics
and their complex conjugates, one has an
explicit expression for I,(r, v, t) in terms of the
specific intensity, i.e.

Latv,t) = [ dQY%@)Ir,v,2,0.  (20)
4r

Since J, consists of 2n + 1 angular components
[see equation (16)], equation (15) represents
in general 2n + 1 relationships between the com-
ponents of J,_,, J,, and J,, . In special cases
symmetry considerations may reduce the number
of non-zero components of J,, and the number
of relationships in equation (15) is reduced
accordingly. For example, in plane parallel
problems the specific intensity is independent
of the azimuthal angle ¢, and hence J, consists
of only one non-zero component.

Now, in equation (12) we replace pg(l
— 2y — §,) by just u, since §; + 2y is of order
o and y and hence to lowest order p(1 — 2y
— 8,) = p,. By similar arguments, we replace
uf{l — 2y — S,) in equation (13) by 9u/10,
and in equations (14) and (15) we replace
41 — 2y — S3) and p(l — 2y) in each case by

similar simplification in equation (11) since
(1 — 2y — §,) is of order « and y, rather than of
order unity (or 9/10), as are the similar terms in
equations (12-15). Introducing these simplifica-
tions into equations (12-15) we find that equa-
tions (11-15) are the spherical harmonic pro-
jections of the equation of transfer

101(r,v,2,1)

+Q- t
p o -VIr,v,Q,1)

= ,u;[B(V) - I(V’Q)] - [lsI(V,Q)

4 3 j A + (- 2)21(v,2)

4n

L ¥l I AL A
+4anQ [ocv av2+(y 2oc)vav Y

4n

x I(v,£2). 21

To equation (21) we need add the contri-
bution of the non-linear induced scattering
terms in equation (6). Since these terms are of
order y, they can be neglected in all but the
zeroth angular moment of the equation of
transfer, just as we neglected all terms of order
o and y in the linear analysis just completed
except in the zeroth angular moment relation-
ship, equation (11). This implies the replace-
ment in the equation of transfer:

Iv, 21 — w@/av)] | dQ[1 — (2 Q)
4
+(@-Q) - (@ 27 Q)
- (1/4n){ dQI(,Q) | 421 — (- 2)
4r 4n

+(Q- Q) — (@ - QP][1 — v(3/ev)] Iv,R).
(22)

us. We note, however, that we cannot make a Thus, the full form of equation (21), including the
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effects of induced scattering, is
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which is a simplified, but a priori just as accurate,
form of Fraser’s result, equation (6). In par-
ticular, equation (23) contains far less scattering
terms than does equation (6}, and the terms
whichaccount forenergy transfer in the scattering
interaction, i.e. those proportional to ¢ and y, are
isotropic in equation (23) whereas they are
angularly dependent in equation (6). Both of
these facts should make equation (23) much
easier to solve, either analytically or numerically,
than equation (6). A significant property of
equation(23)isthatit gives the proper equilibrium
solution, namely a Planck distribution at tem~
perature T as given by equation (2). This can
be verified by direct substitution. Equation (23)
needs to be supplemented with the usual
transport initial condition

I{r,v,2,0) = A(r,v.Q), (24)

and boundary condition which, for a convex
body, is

I(r,v,2,8) = I(r,,v,82,1), 2 n <0, (25)

where A and I' are specified (given) functions,
r, denotes a point on the boundary of the system
under consideration, and n is a unit outward
normal vector.

In the final section of this paper we shall

1 Olr, v, 1)
¢

discuss the accuracy of equation (23) in the
limit of zero electron temperature (a = 0).
Before doing this, however, we derive the diffu-
sion approximation to this transport equation.

3. THE DIFFUSION APPROXIMATION

In problems involving planar or spherical
symmetry, a commonly used approximation in
treating any transport-like equation either ana-
Iytically or numerically is the representation of
integrals over by a two point Gauss quadra-
ture formula [14]. This approximation is equiva-
lent to expanding the intensity in Legendre
polynomials and carrying only the first two
terms. This latter viewpoint has the advantage
that it generalizes in a straightforward way to a
general geometric situation. That is, the specific
intensity is represented by the first two terms in a
surface harmonic expansion

1
v, 2,1) = e Lyr,v,t) + g—%ﬂ~ Iir.v,1, {(26)

where the expansion coefficients I, and I, are
related to the energy density E and net flux F per
unit frequency according to

Ervit)= J.dQI{r 22,1 =~ Ig{r w1}, 27

F(r,v,0) = | dQQIx,v,2,t) = Li(r,v,t).  (28)
4

We now use the assumed representation, equa-
tion (26), in the simplified equation of transfer,
equation (23), multiply the result by 1, 2,, 2,,
and 9, respectively, and integrate over all solid
angle. Suppressing the algebra, we find that
the four moment equations, generally called the
P-1 equations, can be written

o + VoL v 1) = p[4nBO) — 1]

, 0%,
+ g | ov? e -+~(v-—2cx)v———+y1

{Iz IG aBI 6;1 I1+6VI ég[vi],
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29
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10I4(x,v,1)
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To obtain what we shall call the diffusion
approximation, two additional simplifications
are required. In equation (29) we need neglect
the I, I, terms compared to the I terms.
This neglect is consistent with the two term
surface harmonic representation, equation (26),
since this representation is only strictly correct
if [I,| < I, Secondly, we need neglect the
01,/0t term in equation (30) which, if carried,
would give rise to a wave rather than a pure
diffusion character. Making these two simpli-
fications and eliminating I, between the re-
sulting two equations, we find as the diffusion
approximation

%aL’(‘;’;_v_’t_) ~ V- DVIyr,v,t) = p[4nB — I(v)]
2
+ p Exv (;Iz +y -2 )‘«’“‘I‘(l +vl,
cty al, )]
mlo (V’é‘{"" IO > (31)

where D, the diffusion coefficient, is defined as
1

RETET) 2
Equation (31) has been obtained earlier [3]
in a somewhat different manner. Although
much simpler than the transport equation (23),
the diffusion equation (31) should contain ail of
the significant physics, in a semi-quantitative
sense, of the radiative energy transport problem
including scattering effects. The initial condition,
equation (24), becomes for the diffusion equation

I(r,v,0) = 4_[ dQA(r,v,R2) = A(r,v), (33)

and the Marshak boundary condition, an
approximation to the transport boundary con-

dition, equation (25), is [15, 16]
{ dQn-Q|I(r,v,Q,1) = I(r,v,1)

n-f21<0

= (1/4)]o(r, v, t) + (1/2)Dn - Viy(r, v, 1).  (34)

4. THE ZERO TEMPERATURE LIMIT

It was pointed out in the introduction that
previous work which represented the scattering
process by a differential operator led in all cases
to a transport equation which predicted the
physically incorrect result of some increase in the
photon frequency as a result of scattering from
electrons at rest. The particular problem treated
by these authors [ 7,9-12] in which this behaviour
manifested - itself was that of the steady-state
transmission of radiation through a finite
atmosphere. Very recently, this same problem
was treated [13] using the diffusion approxima-
tion given in this paper, equation (31), as the
description of radiative transfer. In this case
the correct behaviour of only a decrease in
photon frequency due to scattering was observed.
It would be a significant finding if one could
prove in general, without reference to any
particular problem, that the diffusion approxi-
mation, equation (31), as well as the more
rigorous transport description, equation (23),
always displays this qualitatively correct be-
haviour. We believe this to be the case and give
in this section our progress to date in con-
structing such a proof. The analysis we shall
give encompasses a large class of physical
situations, but we shall have to appeal to
physical arguments to extend the validity of our
proof to the most general case. It is hoped that
in the future a proof can be constructed which
does not require these physical arguments.

We first consider the diffusion approximation,
equations (31, 33, 34). We imagine that the
source function B(v), the initial condition A(v),
and the incoming distribution I'(v) vanish for
frequencies greater than some frequency v,. We
need prove that the resulting solution for
I(r, v, t) vanishes for v > v, in the case of zero
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electron temperature. It is convenient to intro-
duce a new independent variable x

(35)

where x, = 1/y, = mc?/hv,, and a new de-
pendent variable [,

x — xg = 1/y = mc*/hy,

Ior,x,t) = Iy(r, v, )/(x +xo).  (36)
If we further define
B(r,x,t) = B(r,v,t)/(x + x,), (37
A(r, x) = A(r, v)/(x + xo), (38)
I, x,t) = I(r, v, /(x + x,), (39)

then in the zero electron temperature (a = 0)
case the diffusion approximation, equations
(31, 33, 34) become, with all tildas dropped,

1 81y, x,t) _
¢ ot
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— X < X < 00, (40)

Iy(r, x,0) = A(r, x} H(x),
r(rss X, t) H(X) = % IO(rss X, t)

(41)

+1Dn-VIyr, x, t), 42)
where we have defined
c2h?
P = Samey “3)

In these equations H(x) is the unit step (Heavi-
side) function which explicitly indicates that the
source, initial condition, and incoming distri-
bution vanish for negative x(x < 0 corresponds
to v > vy). In terms of these new variables we
need prove that I(r, x, t) as defined by equations
(40-42) vanishes for negative x.

We treat here the linear diffusion equation,
i.e. equation (40) without the induced scattering
terms (§ = 0). However, the proof we shall give
is applicable in the general case § # 0if the non-
linear terms can be treated by a perturbation

method. This method consists of initially neg-
lecting the non-linear terms and solving the
linear equation for I, using this solution to
compute the non-linear terms, solving the
resulting equation which is again linear for
I,, etc. With the assumption that this procedure
converges to the correct solution for x <0,
the linear analysis we shall give actually treats
the non-linear equation. It should be emphasized
that this question of convergence has not been
investigated and hence the applicability of our
conclusions to the non-linear equation is not
assured. The analysis we shall give assumes that
us and g are functions of the spatial variable
only. On physical grounds, however, we can
extend the region of validity of our result in the
following way. In the general case y, = p(r, x, t).
In the diffusion equation (40) we retain the full
functional dependence of g, in the term uB,
but replace y; in the diffusion coefficient and in
the term y, I, by its minimum value over the x
and t variables. On physical grounds we know
that reducing the absorption coefficient in this
manner cannot decrease the solution for I,(r, x, ).
Hence it suffices to show that the intensity
vanishes for negative x for a frequency and time
independent absorption coefficient. We also
consider the solution of the diffusion equation
in a time interval At such that

T, <A <1, (44)
where 1, is the collision time for photons and is
given by

T, = 1y, + uy), (45)
and 1, is a characteristic time for the electron
density to change. On physical grounds we
know such a At exists in general since 7., a
hydrodynamic time scale, is generally much
greater than t,, a radiation time scale. Now, in
the general case u, = u(r, t), with the dependence
on t (and r) arising entirely from the time (and
space) dependence of the electron density.
Since we have chosen At <€ 1,, we can assume
s to be time independent in this time interval.
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On the other hand, since At > 1,, the radiation
intensity will, in general, undergo significant
temporal changes in this time interval.

The equation we shall consider is then

Lol(nx0 o DVIy(r, x, £) + plo(r, x, 1)

c ot
elg(r, x, t
= S(r, x, t) H(x) — O(ax ~
-0 < X < o0, {46}

where D, u, and p, are functions of the spatial
variable only and we have defined

Str, x, £) = pifr, x, £) B(r, x, 1). 47N

In writing equation (46) we have extended the
region of validity of the diffusion equation to
include all values of x in the interval — oo <
x < co. This implies we define I,(r,x, 1) in
the non-physical wavelength region x < — x,
to be the solution of equations (41, 42, 46)
which joins continuously at x = — x, to the
physically meaningful solution for x > ~ x,.
We shall use transform methods to show that
the intensity as defined by equations (41, 42, 46}
vanishes identically for negative x.

We define the Laplace transform of a func-
tion of time as

7@) = { dte 7@, Rep>0,
o]

and the Fourier transform of a function of x as

(48)

o0

o) = | dxe™y(x).

— %

49)

In this double transform space equations (41,
42, 46) become

Platrkp) - V- DVIo(r, k. p)
+ pdo(r ko p) = Te kop)
+ ikpdo(r, k, p),

f(rss k? P) = %j {)(rxs k, ?} R
+ %Dn - Vf{){rss k, P)&

(50)

(51)

where we have defined
T(r.k,p) = S, k,p) + A, kyfe.  (52)

In deriving equation (50} we have assumed, in
an integration by parts, that I (r, x, t) vanishes
at x = too. Now, the source S(r,x,t), the
initial distribution A(r,x) and the incoming
flux I'(r,, x, ) all vanish for negative x. Hence,
the integral over x defining the Fourier trans-
forms of these quantities need only extend
over {0, o). Accordingly, the functions T{r,k, p)
and I(r.k,p) are analytic functions of k for
Im k£ >0, ie, in the upper half k plane. The
solution of equation (50} subject to the boundary
condition equation {51) can be symbolized as

Iofr, k,p) = [~V:DV +u, +p/c— ikp] ™!
x T(r,k,p),  (53)

where [ ]7! denotes the inverse of the operator

within the brackets. This inverse will exist

for all values of k except the eigenvalues of the

operator of concern. We therefore consider the

location of these eigenvalues in the k plane.
The appropriate eigenvalue problem is

= VDV () + (i +p/c ~ tkui {r) = 0, (54)

with boundary condition
Wir) +3Dn -V fr) =0,

where ¥ (r) is the jth eigenfunction and k;
is the corresponding eigenvalue. The quantities
D, u, and p, are non-negative functions of the
spatial variable and Re p > 0. We multiply
equation (54) by ¥¥}r), where the asterisk
indicates the complex conjugate, and integrate
over the volume of the system under considera-
tion. We find, using a standard vector identity
and Gauss’s theorem,

!’erVI// Vg — ];dsw}‘Dn VY,
+ g’ dr(y, + pfc — ikt = 0.

(53)

(56)

Use of equation (55} to eliminate the n-Vy;
term in the surface integral and solution of the
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result for k; yields

J ar{DVY; VUF + (1,
ARSI

k= —i
! II, drug it

(57)

Since Re p > 0, equation (57) shows that
Imk; <0, ie. all of the eigenvalues fall in the
lower half of the k plane.

Application of the Fourier inversion theorem
to equation (53) gives

Iy(r, x,p) = dke ™[- V-DV

bl o4

+ 4, +ple — k] Tk p). (59)

For negative x we evaluate equation (58) by
closing the contour in the upper half plane.
The semicircular contour gives a zero contri-
bution because of the e "** term in the integrand.
Further, we have shown that T(r k, p) and the
inverse operator are analytic in the upper half
of the k plane. By Cauchy’s theorem we then
conclude

Ir,x,p)=0,x<0. (59)

Inversion of the Laplace transform in equation
(59) yields

Ir, x, £) = —L jdp@lo(r xp=0x<0,

thus completing the proof that the intensity
vanishes for negative x.

We now consider a similar analysis for the
transport equation, (23). The equation we shall
analyze, analogous to equation (46) for the

diffusion approximation, is
1 oI(r,x, £2,1)
c ot

+ i, x, 2,8 = —pJ(r,x,2,1)

+ 3
* Ton

+0-VIr,x, 2,1)

J‘dﬂ [1 +(@- )] I(r,x,82,1)

4n

N L 0L, x, 2, 1)
4n jdg 0x

4r
+8(r,x,2,t) H(x), — 00 < x < o0, (60)
with initial and boundary conditions
Kr, x, 2,0) = A(r, x, 2) H(x),

I(r, x, 2,t) = I'(r,, x, 2, t) H(x),£2-n <0,

(61)
(62)
where g, and pu, are functions of the spatial
variable only. As in the diffusion case, we wish
to prove that I(r, x, £2,t) is identically zero for
negative x. Application of the Laplace transform

with respect to ¢ and the Fourier transform with
respect to x yields

gf(r, k,2,p) + 2 Vi, k 2,p)

— il k, 2, p)
jdﬂ'[l + (2 £2) 2] I(r k 52, p)

¥4

+iky, | dQI(r, k, 2, p) + T(r, k, 2, p),
4n

+ ol k, 2,p) =

436
* Ton

(63)

I,k @,p) = [(r, k, 2,p), 21 <0, (64)

where we have defined

T,k 2,p) = 8.k, @, p) + Alr, k, Q)/c.  (63)
The solution of equations (63) and (64) can be
symbolized

i(r, k, @, p) = 071 T(x, k, 2, p), (66)
where the operator O~ ! is the inverse of the
operator of equation (63). Application of the

inverse Fourier and Laplace transformation
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gives the intensity as

Ir, x, 2, t}_—} gdpe*" j

dk e~ 0~ 1T(r, k, 2, p. (67

If the integrand of equation (67) is an analytic
function of k in the upper half plane, closure of
the contour, for negative x, in the upper half of
the k plane shows that

r,x,2,0)=0x<0, (68)

as was to be proved. Since the source, initial
distribution, and incoming flux distribution
vanish for negative x, it is known that the trans-
forms T(r, k, 2, p) and F(r, k, 82, p) are analytic
in the upper half of the k plane. Hence to show
that the integrand in equation (67) has the proper
analyticity properties, we need only show that
the eigenvalues k; of the operator O lie in the
lower half of the & plane.

The eigenvalue problem to be studied is
Q -V fr, Q) + (g, +p +p/)Yfr2)
3“‘ f dQTL +(@ 2)] ¥ fr, @)

+ ik, J Ay (r,Q),  (69)

4x

with boundary condition
Y =0n-2 <0 (70)

Here § r, Q) is the jth eigenfunction, k; is the
corresponding eigenvalue, the quantities , and
#, are non-negative functions of space, and
Re p > 0. We multiply equation (69) by ¥¥(r, £2),
where the asterisk denotes the complex con~
jugate, and integrate over the volume of the
system and over all solid angles. If we add to
this result its own complex conjugate and apply
Gauss’s theorem, we find

%j\ds jdﬂn‘ﬁgﬂftﬁ}‘ + j‘dr{g@; + pric) jéﬁgﬁfﬁ&}‘ +y j\dﬁlﬁjlﬁ}
&

N 4n Vv

4n

o

v dn ¥ 4n

0 '[cm'[l +(Q @V AQWHD) = —ky jd% jdg fdﬂ’nl/,(ﬂ’)t//;?(ﬂ), (71)

4n 4n

where the subscripts R and I indicate real and ary condition, equation (70), in equation (71)
imaginary parts, respectively. Using the bound- and solving for kj; we find

Ayt + idr(ui. + Pr/c) 4& Ay ¥

:idrgzs 5.{: Ay 3 —

‘jf dry, é aQ 45 dQ (W)
(3/16n) i drgg g{x dan g{zdﬁ'[i + Q- QY S WHR)

‘j' drp, ‘j; aQ js Ay QW)

72)
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Since pp > 0, equation (72) shows that all of
the eigenvalues in question fall in the lower half
of the k plane if we can show that the numerator
of the second term is non-negative. Since p, is
a non-negative function of r, it suffices to show

jdﬂg({))g*(n) -3 Jdﬂ Jdﬂ’
16m
4n 4n 4n
x [1 +(R-2)°] g(2)g*(82) > 0
for an arbitrary function g(£2).

(73)

We shall prove the more general result that
{ dQg()g* () — | dQ | dQf(2-2)
4 4n

4r
9DgXRY=0 (74

for an arbitrary function g(§2) and any real
non-negative function f(£2 - £2') with the property

1
2@ @) =2n | duf@) =1 (75

We expand f(£2- ') in Legendre polynomials
according to

f@-2)= z 2n 2 Lipi@-o)
T

(76)
n=0
where

fi=1[dRPQ2 -2)f(Q-2)

4

=2n | dpP S0 (7))

We further expand g{2) in the surface harmonics
Y,.(82), defined by equation (18), as

0

WD =35 3 Ao Yonl ),

n=0m=—n

(78)

where the A,,, are defined by equation (19) and
Ym = J d2Y7.(2)g(82), (79
with the asterisk indicating the complex con-

jugate. Use of equations (76) and (78) in the left
hand side of equation (74) together with the

addition formula [17]

CON (n — |m))! * ()
P2 )= mYm(ﬂ)Ym(ﬂ)(SO)

m=-n

and the biorthogonality relationship between
the surface harmonics and their complex con-
jugates yields

45:: df2g(2)g*(82) — 4& dn &fu d'f(R-2)

&0

g(E)g*(82) = ”ZO > ”Amn(l = S mmnm.(81)
The left-hand side of equation (81} will be
non-negative if we can show that f, < 1foralln.
Recallingthat f(£2 - 2)isanon-negative function
with a normalization given by equation (75),
we have, using the definition of f,, equation (77),

L aup0r ] dulPl 1
Lo !

<1,

<

1 - 1
J 1 duf(p) j; duf(u)

(82)
the last inequality following from the fact that
the maximum value of |P,(u)| in the range
(—1, 1) is unity. This completes the proof that
the imaginary part of all the eigenvalues k; for
the transport operator is negative, which in
turn shows that the intensity I(r, x, £2, t) vanishes
for negative x.
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Résumé—I ’équation de transport appropriée pour les calculs de transport de chaleur par rayonnement
et tenant compte des effets de dispersion des photons est discutée. On montre que pour des températures
et des énergies de photon faibles (< 0,5 MeV), 1a dispersion des photons par un gaz maxwellien d’électrons
libres peut étre décrite par un opérateur différentiel du second ordre relativement simple. Une approxi-
mation du type de la diffusion, employant la méme description de la dispersion, est obtenue a partir de
I’équation de transport. Les aspects qualitatifs de la solution des équations de transport et de diffusion
sont discutés dans le cas limite d’une température électronique nulle. En particulier, on montre que dans
cette limite cette description de la dispersion donne le comportement propre seulement d’une décroissance
de la fréquence des photons au course de leur dispersion. Ceci contraste avec des essais antérieurs pour
représenter le processus de dispersion par un opérateur différentiel qui conduisait au résultat physiquement
incorrect d’une certaine croissance de la fréquence due 4 la dispersion 4 partir des électrons au repos.

Zusammenfassung—Die fiir die Berechnung des Wiarmeiibergangs durch Strahlung geeignete Transport-
gleichung, welche Effekte der Photonenstreuung einschliesst, wird diskutiert. Es wird gezeigt, dass fiir
kleine Temperaturen und Photonenenergien ( <0,5 MEV) die Streuung der Photonen eines Maxwell’schen
Gases freier Elektronen durch einen relative einfachen Differentialoperator zweiter Ordnung beschrieben
werden kann. Eine Niherung fiir die Diffusion, wird aus der Transportgleichung abgeleitet, wobei dieselbe
Beschreibung der Streuung verwendet wird. Die qualitativen Aspekte der Losung, sowohl der Transport-
als auch der Diffusionsgleichung werden fiir den Grenzfall der Elektronentemperatur null diskutiert.
Insbesondere wird gezeigt, dass in diesem Grenzfall diese Beschreibung der Streuung das richtige Verhalten
bei der Streuung, namlich nur eine Abnahme der Photonenfrequenz, angibt.
Dies steht im Gegensatz zu fritheren Versuchen, die den Prozess der Streuung durch einen Differential-
operator ausdriicken, wobei sich das unkorrekte Ergebnis eines Anwachsens der Frequenz ergibt, als
Folge der Streuung an ruhenden Elektronen.

Amnoranua—PaccMarpuBaerca ypaBHeHHe IYYHCTOTO TellmooGMeHa ¢ y4YéToM (OTOHHOrO
pacceanun. Ilokasano, YTO IPUM HUBKUX TEMIEPATYPax U sHepruax goroxos (« 0,5 mdB)
paccesHHe (OTOHOB MAKCBEJJOBCKUM ra30M CBOGOMHEIX 9JIEKTPOHOB MOKHO OINCATH C
MOMOMIBbI0 OTHOCHTEIBHO NPOCTOro AuQdepeHIMabHOTO ONlepaTopa BTOporo nopAgka. Ms
YPaBHEHMA TIlepeHoca BEBelleHa MNQOY3MOHHAA ANPOKCUMAlMA, TAKKe YYHMTHBAOIAA
pacceanne. KomnyecTBenHble pe3ynbTaTh pelieHUs ypaBHeHMit mepenoca u Ruddysuu pac-
CMATPUBAIOTCA B NpPElEIbHOM CHaydae HYIeBOA »JeKTPOHHOK Temmeparypui. Ilpm aTom
0KAa’3aJIoCh, YTO pacceAHMe NPHBOANT TONBKO K yMeHBUICHWIO YaCTOTH n3nyuenus. [Ipesxnue
MONLITKY NPEACTABUTh HpONecC paccestHHA ¢ MoMompblo nuddepeHIMATLHOTO OnepaTropa
maBa;m (u3MUECKN HEeBepHHE Pe3YJbTATH HEKOTOPOTO YBeJNMYEHWS 9acTOTHL 3a CYeT
paccesiHUA.



