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NOMENCLATURE ’ !& absorption coefficient modified to in- 
source due to spontaneous emission; elude induced emission ; 
speed of light ; CL,, Thomson scattering coefficient ; 
diffusion coefficient ; V, frequency ; 
electronic charge ; 0s double differential scattering coefficient ; 
Planck’s constant ; z 0 hydrodynamic time scale ; 
specific intensity ; L radiation time scale ; 
zeroth angular moment of specific 52, unit vector in direction of photon travel. 
intensity ; 
first angular moment of specific in- 1. INTRODUCTION 
tensity ; IN THIS paper a relatively simple treatment of 
Boltzmann’s constant ; photon scattering in the transport equation 
electron mass ; appropriate for radiant heat-transfer calcula- 
unit outward normal vector ; tions is presented. In particular the description 
electron density ; of photon scattering from a Maxwellian gas of 
spatial coordinate ; free electrons is considered in detail within the 
classical electron radius ; radiative transfer context. The most compre- 
time ; hensive treatment of this problem to date is 
temperature ; due to Fraser [l] and we shall draw heavily 
dimensionless wavelength. upon his ideas. However, it will be shown that 

Fraser’s analysis can be carried further and 
Greek symbols 

a, dimensionless temperature; 

Y, dimensionless frequency ; 

r, incoming intensity distribution ; 

A, initial intensity distribution ; 

p 09 absorption coefficient ; 

F 

the resulting description of scattering is both 
simpler and qualitatively more accurate than 
Fraser’s result. Following a brief review of 
work done to date on this scattering problem, 
we shall be able to state more explicitly the 
contribution of this paper. 
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Abstract--The transport equation appropriate for radiant heat-transfer calculations and including the 
effects of photon scattering is discussed. It is shown that for low temperatures and photon energies 
(eO.5 MeV) the scattering of photons from a Maxwellian gas of free electrons can be described by a 
relatively simple second order differential operator. A diffusion approximation, employing the same 
description of scattering, is derived from the transport equation. The qualitative aspects of the solution 
of both the transport and diffusion equations are discussed in the limit of zero electron temperature. In 
particular, it is shown that in this limit this description of scattering gives the proper behavior of only a 
decrease in photon frequency upon scattering. This is in contrast to previous attempts to represent the 
scattering process by a differential operator which led to the physically incorrect result of some increase in 

frequency due to scattering from electrons at rest. 
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In the polarization independent approxima- 
tion the equation of transfer for the specific 
intensity I(r, v, Q, t) of photons can be written 
quite generally as [2] 

1 a@, v, 52, t) 

C dt 
+ a. Vl(r, v, Jz, t) 

- 
1 s 

dv’ df;l’o,(v + v’, 0. a’) Z(v, a) 

0 48 

x 1+ 
C 

& I(v’, a’) 1 
a, 

+ 

s s 
dv’ dLYa,(v’ --, v, LY . f2) Z(v’, $2’) 

0 4% 

xv 1+ 
Vi [ 

& I(% Q) 1 7 (1) 
where, for no~tion~ simplicity, we have dropped 
the arguments r and t in the specific intensity 
I(r, v, l2, t) on the right-hand side of this equa- 
tion. Here r, v, fl2, and tare the spatial, frequency, 
angular, and temporal coordinates, respectively, 
c is the speed of light, B(v) is the source term 
due to spontaneous emission, p:(v) is the 
absorption coefficient suitably modified for 
induced emission, and o,(v’ + v, II’. Sz) is the 
double differential scattering coefficient (cross 
section). Although not explicitly shown, B, 
,& and (c, are in general fictions of both r and 
t. We assume, however, that B(v) and &,(v) 
are independent of the direction fa of travel of 
the photon, and, as shown, that cr*(v --, v, 62’. a) 
is only a function of the scattering angle rather 
than a and nl separately. For an observer at 
rest with respect to the medium this implies 
isotropic matter, i.e. matter with no preferen- 
tial direction. For an observer moving with 
speed o with respect to the medium, this afso 
implies the neglect of terms of order v/c El]. 
If local the~od~~i~ ~uilib~um can be 

assumed, then B(v) is the Planck function 

2hv3 
B(v) = c2 (eb”lKT - I)- l, 

and 

11:, = lz,(l - eahvlkT), (3) 

where K is the absorption coefficient appro- 
priate to thermodynamic equilibrium and the 
exponential factor is the effective decrease in 
absorption due to stimulated emission. Here 
T = T(r, t) is the local tem~rature of the 
medium. Stimulated scattering is described by 
the quadratic terms in the intensity in equation 
(1). The factor v/v’ in the inscattering term 
accounts for the fact that the scatteringcoefficient 
is defined relative to a photon density in phase 
space whereas the intensity I is an energy 
density. The only significant approximation 
we have made in writing equation (l), other 
than the inherent approximation that photon 
transport can be described by a classical 
equation of transfer, is that polari~tion effects 
need not be taken into account. If the scattering 
interaction is between photons and free elec- 
trons, analytical evidence suggests that, as far 
as energy transfer is concerned, this approxima- 
tion introduces a very small error [3]. Of course, 
if one is specifically interested in polarization 
effects, equation (1) is not applicable. 

In the case of photon scattering from free 
electrons at rest, the scattering interaction is 
described by the well known Klein-Nishina 
formula [4] 

G,(V --+ V’, p) = NJ; [l + y(l - ,fL)]_” 

1 Y% - A2 
x l +fF-?q)c1+ y(1 - p)] \ 

xc? VI- 

C 

V 

1 + Y(1 - PI ’ 
> 

(4) 

where N, is the electron density, y = hv/mc2 
(h = Planck’s constant and me2 is the rest 
energy of the electron), r0 = e2/mc2 is the 
classical electron radius, and &(z) is the Dirac 
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delta function. The case of scattering from a 
moving electron can be treated by using 
equation (4) in conj~ction with a Lorentz 
transfo~ation of equation (1). Finally, the 
case of scattering from a distribution of moving 
electrons can be treated by averaging the Lorentz 
transformed equation for a particular velocity 
over the velocity distribution of the electrons. 
This procedure leads to an expression for the 
scattering coefficient cr,(v -+ v’, p) and, for a 
Maxwellian electron distribution, was initially 
carried out by Dirac [5] and later refined by 
Edmonds [6]. However, the result is algebraic- 
ally complex and can only be expressed relatively 
simply as a power series in (KI’/nzc”)~, where T 
is the electron temperature (k is Boltzmann’s 
constant). 

Because of this complexity, one is led to 
seek a simpler description of photon scattering 
from electrons in the equation of radiative 
transfer. The first step in this direction was 
taken by Chandrasekhar [7] who treated, 
within the context of a specific problem, the 
case of scattering from electrons at rest. The 
essential idea of Chandrasekhar was to expand 
Z(r, v’, a: tf in the scattering terms of equation 
(1) in a power series about v’ = v and carry 
only zeroth and first derivative terms. This 
procedure, which is correct to order y = hv/mc2, 
transforms the integral operator in frequency 
into a first order differential operator and is 
~uiv~ent to the “Fermi Age” approximation 
in neutron transport theory [8]. However, the 
work of Chandrasekhar lacked generality since 
it treated the case of zero electron temperature 
and dilute radiation (the non-linear induced 
scattering terms were neglected). Further, an 
approximation to the Klein-Nishina formula 
given by 

a,(v -b v’, p) = +N&& ( v’ - 
V 

1 + Y(1 - $4 ’ > 
(5) 

was used in this work. In addition to Chan- 
drasekhar, several other authors [g-12] have 

used this procedure, or slight modifications of 
it, to compute changes in the spectral distribu- 
tion of radiation due to scattering from elec- 
trons at rest. All have found a physically incorrect 
behavior, namely a slight increase in frequency 
for some photons upon scattering. This error 
is clearly introduced by making use of the 
truncated Taylor series expansion since the 
more correct integral operator will not display 
this incorrect behavior. 

This procedure of Chandrasekhar has recently 
been generalized by Fraser [l] to include both 
the effects of a non-zero electron temperature 
and induced scattering effects. Further, Fraser 
used the correct Klein-Nishina scattering co- 
efficient, equation (4), as the rest frame descrip- 
tion. Fraser’s result is an equation of transfer 
correct to order y = hvlmc” and a = kT/mc2 
with scattering represented by a second order 
differential operator. Since mc* z 0.51 meV, 
this equation should be quite accurate for 
most problems of interest. However, Fraser’s 
formulation still suffers from the defect that 
in the limit of zero electron temperature it also 
gives the incorrect result of some increase in 
photon frequency upon scattering [13]. 

With this background discussion we can now 
state explicitly the content of the present paper. 
We shall show that Fraser’s equation of 
transfer can be simplified without invoking 
any assumptions other than those already 
contained in his result. Further, we shall discuss 
the available analytic evidence which indicates 
that in the limit of zero electron temperature 
this simplified equation of transfer does not 
give the incorrect behavior of a frequency 
increase upon scattering. We shall prove this 
result in some degree of generality without 
reference to any specific problem. We will also 
derive the P - 1 (diffusion) approximation, 
equivalent to the two point Gauss quadrature 
method often used in analytic work in planar and 
spherical geometries [14], to the simpli~ed 
transport equation. We shall show that this 
equation also gives the proper behavior in the 
limit of zero electron temperature. 
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2. EQUATION OF TRANSFER 
Fraser [l] has shown that an expansion of 

equation (1) to first order in y = hv/nzc2 and 
c1 = kT/mc’ in the case of photon scattering 
from a Maxwellian gas of free electrons at 
temperature T yields 

1 ar(r, v, 0, t) _ 
C at + n . VZ(r, v, n, t) 

= ‘4pw - &J, WI - PSU - 2Y) ev> Q) 

x dQ[l - (a. $2’) + (a. .‘)2 

- (n . Kq3 ] I( v, cl’), (6) 

where Pi = 87rJV,r$/3 is the Thomson scattering 
coefficient, P&z) is the nth Legendre pol~omial, 
and the operators S, are defined as 

so+-?+f--) 

s3=$(1 -vg) 
a2 

fc? 4+2v-$-v2s 
( >I . 

(7) 

(8) 

(9) 

(IO) 

Since equation (6) is the lowest order description, 

in GI and y, of deviations from conservative 
Thomson scattering, it can be simplified without 
introducing any further approximations. 

A straightforward way to effect this simpli- 
fication is to consider equation (6) projected onto 
the basis elements of a spherical harmonic 
function space. We shall follow the vectorial 
method introduced in neutron transport theory. 
Since these spherical harmonic equations are 
only an intermediate result, we shall omit the 
details of their derivation, referring the interested 
reader to the book by Davison [15]. If for 
simplicity we momentarily neglect the induced 
scattering (non-linear) terms in equation (6), 
the result is 

J$ + vu. VJ1 + /.&(JO - 47rB) 

+ f&(1 - 2y - So) J, = 0, (11) 

;$r $‘Vu+VJJ, +3[/& t&(1 - 2y 

- S,)] J, + u . VJO = 0, U2) 

;fg +v,.vgJ, +5(Ip; -t&(1 - 2y 

- S,)]J, -I” 3u * VJJ, - u2v,. VJl = 0, (13) 

- S,)]J, + 5U * V,.J, - U’V, . V,J, = 0, (14) 

2p1 + 1 t?J --..!! fVu*V,J,+X +(2n + 1) 
c at 

x /“p: + ~~(1 - 2y)]J, + (2~2 - l)U * V,J,_ 1 

- U”V,~VJJ,_, = 0,n 2 4. (15) 

In these equations the vector U is in the direc- 
tion $2 and has an arbitrary magnitude U. 
The functions J, are defined as 

U” n 
J,=-_._n 

2n + 1 
c 

&A,(r~ v, t)Y,,VQ (16) 

m=-n 

where the I&r, v, t) are the coefficients of an 
expansion of the specific intensity in surface 



harmonics according to similar simplification in equation (11) since 
(1 - 2y - So) is of order c1 and y, rather than of 

al n 

Z(r,v,Q,t) = ; 
cc 

order unity (or g/10), as are the similar terms in 

‘%mZnm(r, v> 0 Y,,(Q). equations (12-15). Introducing these simplifica- 

n=O WI=-II tions into equations (12-15) we find that equa- 

(17) tions (11-15) are the spherical harmonic pro- 

Here the surface harmonics are defined in the 
jections of the equation of transfer 

usual way: 

Y,,(0) = Pkl (cos 0) e’“S (18) 
1 aZ(r, v, Q, t) _ 
C at 

+ B * VZ(r,v,Qt) 

where the e(z) are the associated Legendre 
functions and the constants A, are normaliza- 
tion coefficients 

= ,upw - z(v,f41 - P&m 

A,,,, = 47$-$. dQ K,,,(Q) XAWI - 1 

= (2n + l)(n - Im(Y 
+ $; 

s 
dR’[l + (a’. ~)*]Z(v,fZ’) 

(19) 4% 

(n +Im()! 
with the asterisk on Y,,(B) indicating the com- 
plex conjugate. Due to the biorthogonality 
relationship between the surface harmonics 4n 

and their complex conjugates, one has an 
explicit expression for Z,,Jr, v, t) in terms of the x Z(v,fq. (21) 
specific intensity, i.e. 

To equation (21) we need add the contri- 
Z,,(r,v,t) = j dQY&,(JZ)Z(r,v,JZ, t). (20) bution of the non-linear induced scattering 

4n terms in equation (6). Since these terms are of 
Since J, consists of 2n + 1 angular components order y, they can be neglected in all but the 
[see equation (16)], equation (15) represents zeroth angular moment of the equation of 
in general 2n + 1 relationships between the com- transfer, just as we neglected all terms of order 
ponents of .Z,_ i, J,, and J,, 1. In special cases a and y in the linear analysis just completed 
symmetry considerations may reduce the number except in the zeroth angular moment relation- 
of non-zero components of J,, and the number ship, equation (11). This implies the replace- 
of relationships in equation (15) is reduced ment in the equation of transfer : 
accordingly. For example, in plane parallel 
problems the specific intensity is independent 
of the azimuthal angle cp, and hence J, consists z(~,s~)[I - v(a/av)] f da’[i - (n f ny 

4n 
of only one non-zero component. 

Now, in equation (12) we replace pL,( 1 
+ (a * LYy - (0 . a’)“] Z(v,Q’) 

- 2y - S,) by just CL,, since S, + 2y is of order 
a and y and hence to lowest order ~~(1 - 2y 

-+(1/47r)J dfiZ(v,Q) J da’[l - (0 .a’) 
4n 4n 

- S,) = pL,. By similar arguments, we replace 

&(I - 2Y - S,) in equation (13) by 9ps/lO, + (a . w)* - (a . ay] [I - v (aiav)] Z(V, ~2’). 

and in equations (14) and (15) we replace (22) 
~~(1 - 2y - S,) and ps( 1 - 2y) in each case by 
u.. We note. however. that we cannot make a . ” Thus, the full form of equation (21), including the 
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effects of induced scattering, is 

= Pn%J) - w41 - &%,r(it) 

+- i?b”f; 
s 

dQ[ 1 + ($2 . Q’)2]Z(v, i-2’) 

4n 
-I 

t-y 

‘an 1 

x 1 - v g Z(v,R”), ( > (23) 

which is a simplified, but a priori just as accurate, 
form of Fraser’s result, equation (6). In par- 
ticular, equation (23) contains far less scattering 
terms than does equation (6), and the terms 
wbi~haccount forenergytransf~rin thescatterin~ 
interaction, i.e. those proportional to 01 and y, are 
isotropic in equation (23) whereas they are 
angularly dependent in equation (6). Both of 
these facts should make equation (23) much 
easier to solve, either analytically or numerically, 
than equation (6). A significant property of 
equation(23)isthatitgivestheproperequilibrium 
solution, namely a Planck distribution at tem- 
perature Z’as given by equation (2). This can 
be verified by direct substitution. Equation (23) 
needs to be supplements with the usual 
transport initial condition 

I@, v, GO) = A@, v, a), (241 

and boundary condition which, for a convex 
body, is 

Z(r,,v$,t) = r(rs,v,f&F),f2*n < 0, (2.5) 

where n and S are specified (given) factions, 
r, denotes a point on the boundary of the system 
under consideration, and n is a unit outward 
normal vector. 

In the final section of this paper we shall 

discuss the accuracy of ~uation (23) in the 
limit of zero electron temperature (g = 0). 
Before doing this, however, we derive the diffu- 
sion approximation to this transport equation. 

3. THE DHWUSION APPROXIMATION 

In problems involving planar or spherical 
symmetry, a commonly used approximation in 
treating any transport-like equation either ana- 
lytically or numeric~Iy is the represen~tion of 
integrals over 61 by a two point Gauss quadra- 
ture formula [143. This approximation is equiva- 
lent to expanding the intensity in Legendre 
poI~omials and carrying only the first two 
terms. This latter viewpoint has the advantage 
that it generalizes in a straightforward way to a 
general geometric situation. That is, the specific 
intensity is represented by the first two terms in a 
surface harmonic expansion 

~~r,v,~,~) = $&(r,v,t) +~~.I~~r,v,~), (26) 

where the expansion coeflicients I, and I, are 
related to the energy density E and net flux F per 
unit frequency according to 

E(r,v,t) = f 
s 

dSX[r,v,llt,t) = k &&v,t), (27) 

4n 

F(r,v,t) s lx di2Ql(r,v,JZ,t) = I,(r, v,t). (28) 

We now use the assumed representation, equa- 
tion (26), in the simplj~ed equation of transfer, 
equation (23), multiply the result by I, Sz,, f2,, 
and bt,, respectively, and integrate over all solid 
angle. suppressing the algebra, we find that 
the four moment equations, generally called the 
P-l equations, can be written 
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1 wr, v, t) _ 
c at + U/3) V&)(r,v,Q 

+ @Lb + PA I,(v) = 0. (30) 

To obtain what we shall call the diffusion 
approximztion, two additional simplifications 
are required. In equation (29) we need neglect 
the I1 ~1, terms compared to the 1: terms. 
This neglect is consistent with the two term 
surface harmonic representation, equation (26), 
since this repre~ntation is only strictly correct 
if iI,1 4 I,. Secondly, we need neglect the 
aI,/& term in equation (30) which, if carried, 
would give rise to a wave rather than a pure 
diffusion character. Making these two simpli- 
fications and eliminating I, between the re- 
sulting two equations, we find as the diffusion 
approximation 

f ‘zo~v’ t, - V - DVlo(r,v,t) = pA[47cB - IO(v)] 

+ ps .v2 - 
[ 

a210 
ay2 +(y - 2Cx)v-$ +rr, 

+4$fo~v81 )] 
810 I -- 
av O ’ 

(31) 

where D, the diffusion coefficient, is defined as 

D= 
1 

301,: + /A) 
(32) 

Equation (31) has been obtained earlier [3] 
in a somewhat different manner. Althou~ 
much simpler than the trmsport equation (23), 
the diffusion equation (31) should contain all of 
the significant physics, in a semi-quantitative 
sense, of the radiative energy transport problem 
including scattering effects. The initial condition, 
equation (24), becomes for the diffusion equation 

I,@, v,O) = j d&l@, v, Sm) 3 .4(r, v), (33) 
4n 

and the Marshak boundary condition, an 
approximation to the transport boundary con- 

dition, equation (25), is [15, 161 

= ( 1/4)Zo(rs, v, t) + (l/2)011 . VZ,(r,, v, 1). (34) 

4. THE ZERO TEMPERATURE LIMIT 
It was pointed out in the introduction that 

previous work which represented the scattering 
process by a differential operator led in all cases 
to a transport equation which predicted the 
physically incorrect result of some increase in the 
photon frequency as a result of scattering from 
electrons at rest. The particular problem treated 
by these authors [7, g-121 in which thisbehaviour 
manifested’ itself was that of the steady-state 
transmission of radiation through a finite 
atmosphere. Very recently, this same problem 
was treated [13] using the diffusion approxima- 
tion given in this paper, equation (31), as the 
description of radiative transfer. In this case 
the correct behaviour of only a decrease in 
photon frequency due to s~ttering was observed. 
It would be a significant finding if one could 
prove in general, without reference to any 
particular problem, that the diffusion approxi- 
mation, equation (31), as well as the more 
rigorous transport description, equation (23), 
always displays this qualitatively correct be- 
haviour. We believe this to be the case and give 
in this section our progress to date in con- 
structing such a proof. The analysis we shall 
give encompasses a large class of physical 
situations, but we shall have to appeal to 
physical arguments to extend the validity of our 
proof to the most general case. It is hoped that 
in the future a proof can be constructed which 
does not require these physical arguments. 

We first consider the diffusion approximation, 
equations (31, 33, 34). We imagine that the 
source function B(v), the initial condition A(v), 
and the incoming distribution F(v) vanish for 
frequencies greater than some frequency vo. We 
need prove that the resulting solution for 
lo(r, v, t) vanishes for v > vO in the case of zero 
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electron temperature. It is convenient to intro- 
duce a new independent variable x 

x - x,, = l/y = mc2/hv, (35) 

where x0 = l/y, = mc’/hv,, and a new de- 
pendent variable 1, 

J)(r, x, t) = Zo(r, v, Q/(x + x0). 

If we further define 

(36) 

Bir, x, 0 = B(r, v, Q/(x + &I), (37) 

;i(r, x) = h(r, v)/(x + x0), (38) 

F(rS, X, t) = f(r,, v, Cl/(x f x0), (39) 

then in the zero electron temperature (a = 0) 
case the diffusion approximation, equations 
(31, 33, 34) become, with all tildas dropped, 

1 aL.dr, x, 0 - 
at - V . DVl,(r, x, t) 

c 

fdr, x7 0) = M, 4 Nxh 

Z(r,, x, 0 H(x) = t Z&, x, t) 

+ + Dn - Vl,(r,, x, t), 

where we have defined 

(41) 

(42) 

(43) 

In these equations H(x) is the unit step (Heavi- 
side) function which explicitly indicates that the 
source, initial condition, and incoming distri- 
bution vanish for negative x(x < 0 corresponds 
to Y > ve). In terms of these new variables we 
need prove that I,,(r, x, t) as defined by equations 
(40-42) vanishes for negative x. 

We treat here the linear diffusion equation, 
i.e. equation (40) without the induced scattering 
terms (~3 = 0). However, the proof we shall give 
is applicable in the general case ,8 # 0 if the non- 
linear terms can be treated by a perturbation 

method. This method consists of initi~ly neg- 
lecting the non-linear terms and solving the 
linear equation for Ze, using this solution to 
compute the non-linear terms, solving the 
resulting equation which is again linear for 
I,,, etc. With the assumption that this procedure 
converges to the correct solution for x < 0, 
the linear analysis we shall give actually treats 
the non-linear equation. It should be emphasized 
that this question of convergence has not been 
investigated and hence the appli~bility of our 
conclusions to the non-linear equation is not 
assured. The analysis we shall give assumes that 
pS and & are functions of the spatial variable 
only. On physical grounds, however, we can 
extend the region of validity of our result in the 
following way. In the general case ,uA = pi(r, x, t). 
In the diffusion equation (40) we retain the full 
functional dependence of Z& in the term Q?, 
but replace &, in the diffusion coefficient and in 
the term &J, by its minimum value over the x 
and t variables. On physical grounds we know 
that reducing the absorption coefficient in this 
manner cannot decrease the solution for I&,x, t). 
Hence it suffices to show that the intensity 
vanishes for negative x for a frequency and time 
independent absorption coefficient. We also 
consider the solution of the diffusion equation 
in a time interval At such that 

where z, is the collision time for photons and is 
given by 

rr = l/4& + cl,). (45) 

and r, is a characteristic time for the electron 
density to change. On physical grounds we 
know such a At exists in general since z,, a 
hydrodynamic time scale, is generally much 
greater than zr, a radiation time scale. Now, in 
the general case ps = ,uJr, t), with the dependence 
on t (and r) arising entirely from the time (and 
space) dependence of the electron density. 
Since we have chosen At 4 z,, we can assume 
pS to be time independent in this time interval. 
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On the other hand, since & % rP the rad~tion 
iR~e~sjty will, in general, undergo ~~i~c~t 
temporal changes in this time interval. 

The equation we shall consider is then 

-CZ3<XX<, WI 

where D, & and H are f~~c~o~s of the spatial 
variable only and we have damped 

S(r, x, 9 = A@, x, t) sfr, x7 0, (47) 

In writing equation (46) we have extended the 
region of validity of the diffusion equation to 
include all values of x in the interval - co c 
x < 00. This implies we define &Jr, CC, t) in 
the non-physical wavelength region x -ZC - x0 
to be the solution of equations (41, 42, 46) 
which joins eo~t~uo~l~ at x = - xe to the 
~hysi~lly rn~~gf~ s~I~~~n for x > - X& 
We shall use transform methods to show that 
the intensity as delined by equations (41,42,46) 
vanishes identically for negative X. 

We define the Laplace transform of a func- 
tion of time as 

J;(p) = 1 dt emPff(t), Rep s 0, (48) 

and the Fourier transform of a function of x as 

where we have defeat 

f(r, k, p) = $r, k, p) + A@, &k. Wf 

In deriving equation (SO) we have assumed, in 
an integration by parts, that I,(r, x, t) vanishes 
at x = rfi cg. Now, the source S(r, x, t), the 
initial distribution n(r, X) and the incoming 
flux f(rs, x, t) all vanish for negative 3~. Hence, 
the integral over x defining the Fourier trans- 
forms of these quantities need only&cxtend 
over @J CO). Acco~diugly~ the functions Iffl; k, p) 
and f(rt P$ p) are m&&c ~~~~~~~~ of k for 
Im k > Ox i.e., in the upper half k plane. The 
solution ofequatio~ (SO) subject to the boundary 
condition equation (51) can be symbolized as 

&,(r,k,p) = f-VDV +p; +p/c - ikps]-f 

x +b, k, P), (53) 

where [ ]- ’ denotes the inverse of the operator 
within the brackets. This inverse will exist 
for all va&es of k except the eigeuvalues of the 
ol?erator of concern. We therefore consider the 
location of these e~genvalu~ in the k plane. 

The appropriate e~g~val~e problem is 

- V * nV$jrl f f/L + P/C - ~kj~*~~~r~ = 0% (54) 

with boundary condition 

dJ/jJr,) -E- 4Dn ’ wj@,, = 0, W) 

where $jr) is the jth eigenfunction and kj 
is the co~~~ondi~~ eigenvalue. The quantities 
D> &,, and p* are non-~ega~ve fur~&~~ of the 
spatial variable and Re p > 0. We rn~lt~~l~ 
equation (54) by am, where the asterisk 
indicates the complex conjugate, and inte~ate 
over the vohune of the system under considera- 
tion. We fmd, using a standard vector identity 
and Gauss’s theorem, 

J drDVll/j * V$j+ - [ ds$$Dn * VJlj 
V 

+ j dr(C11, + p/c - ikj&,b,J/f -r: 0. (56) ;Y 

USe Of equation {X5) %O eliminate the n *V$j 

term in the surface integral and solution of the 
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result for kj yields 

Since Rep > 0, equation (57) shows that 
Im kj < 0, i.e. all of the eigenvalues fall in the 
lower half of the k plane. 

Application of the Fourier inversion theorem 
to equation (53) gives 

m 

dk eTik”[- V. DV 

._ 

+ & + p/c - ikpJ_ ’ fir, k, p). 08) 

For negative x we evaluate equation (58) by 
closing the contour in the upper half plane. 
The semicircular contour gives a zero contri- 
bution because of the eTikx term+ the integrand. 
Further, we have shown that T(r, k, p) and the 
inverse operator are analytic in the upper half 
of the k plane. By Cauchy’s theorem we then 
conclude 

f&r, x, p) = 0, x < 0. (59) 

Inversion of the Laplace transform in equation 
(59) yields 

lo@, x, t) = & 
s 

dp eP*&,fr, x, p) = 0, x -c 0, 

thus completing the proof that the intensity 
vanishes for negative x. 

We now consider a similar analysis for the 
transport equation, (23). The equation we shall 
analyze, analogous to equation (46) for the 

diffusion approximation, is 

1 H(r, x, sd, t) - 
at 

f D - Vf(r, x, a, t) 
c 

-t KAr, x, f&t) = -pJ@, x, 0, tf 

+ -& 
f 

df2’[1 + (a * d2’)z J I(r, x, a’, t) 

4a 

aI@, X, fl’, t) 
ax 

+ S(r, x, Jz, 1) H(x), - co < x < co, (60) 

with initial and boundary conditions 

I@, x, a, 0) = N, x, a) H(x), (61) 

Z(r,, x, 0, t) = I”(r,, x, l2, t) H(x), 62. II < 0, (62) 

where pi and ,u~ are functions of the spatial 
variable only. As in the diffusion case, we wish 
to prove that I@, x, 9, t) is identically zero for 
negative x. Application of the Laplace transform 
with respect to t and the Fourier transform with 
respect to x yields 

E i(r, k, 62, p) f Jz * V&r, k, St, p) 

+ ,&h, k, Q, p) = - ,u.k, k, a, p) 

+ 3/G 16n 
s 

dQ’[l -t- (Q + fit’)‘] $r, k, f.2’, p) 

4R 

+ ikps j d&r, k, a’, p) + +(r, k, a, p), (63) 
4% 

f(r,, k, l2, p) = f( r,, k, R, p), B * II -K 0, (64) 

where we have defined 

J&r, k, ft, p) = &r, k, a, p) f /i(r, k, W’c. (65) 

The solution of equations (63) and (64) can be 
symbolized 

r^(r, k, f2, p) = O- 1 ?(r, k, a, p), (66) 

where the operator 0 -l is the inverse of the 
operator of equation (63). Application of the 
inverse Fourier and Laplace transformation 
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gives the ~tensity as 

dke-“UO-‘?(&k,fl,& (67) 

If the integrand of equation (67) is 811 analytic 
function of k in the upper half plaue, closure of 
the contour, for negative x, in the upper half of 
the k plane shows that 

1(r, x, n, t) = 0, X < 0, (68) 

as was to be proved. Since the source, initial 
dist~bu~~~ and incoming flux dist~bution 
vanish @r negative X, it 2s known that the trans- 
forms T;(r, k, St, p) and r(r, k, a, p) are analytic 
in the upper half of the k plane. Heuce to show 
that the integrand in equation (67) has the proper 
aualyticity properties, we need only show that 
the ei~~n~lues kj of the operator 0 lie in the 
lower IuS of the k plane. 

with boundary condition 

~~~r,~} = 0,n.Q < 0, VXI 

IIere $Arl $2) is the jth ei~~f~~tion, ki is the 
corresponding eigenvalue, the quantities Cr:, and 
fn, are non-n~ga~~e functions of space, and 
Re p > 0. We multiply equation (69) by #(r, Q), 
where the asterisk denotes the complex con- 
jugate, and intagrate over the volume of the 
system and over all solid angles. If we add to 
this result its own complex conjugate and apply 
Gauss’s theorem, we find 

where the subscripts R and I i~di~te real and ary condition, equation f%), in equation (71) 
paging parts, resistively. Using the bound- and solving for kjr we fmd 
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Since PR > 0, equation (72) shows that all of addition formula [17] 
the eigenvalues in question fall in the lower half 
of the k plane if we can show that the numerator n (n-Iv@! 
of the second term is non-negative. Since ps is P&n. al) = 

c m=_n(n + I+ 
%,A@%,(~‘) (80) 

a non-negative function of r, it suffices to show 

J daQ(a)Q*(a) - & s J and the biorthogonality relationship between 
dSZ d&J’ the surface harmonics and their complex con- 

4n 

x [l + (a * 0’)2j&)Q~@2’) 2 0 

jugates yields 

(73) 
for an arbitrary function g(G). 

f df2#2)g*(j2) - lz d8 4s, d#lf(n. 0’) 
4n 

m R 

We shall prove the more general result that 

f d~g(~)g*(~) - f dfl f d&3”@ * 52’) The left-hand side of equation (81) will be 
478 4n 

g&*(sr? 2 0 
non-negative if we can show that f, < 1 for all n. 

(74) Recallingthatf(fl - Ja’)isanon-negative function 

for an arbitrary function g(a) and any real 
with a normalization given by equation (75), 

non-negative functionf@ * 82’) with the property 
we have, using the definition off,, equation (77), 

1 1 

We expand ~“(a * 82’) in Legendre pol~omials 
according to (82) 

f(a * a’) = 
m 2n+1 

the last inequality following from the fact that 

c 

the maximum value of 1 P,(p)I in the range 
--&+“(a *m (76) (-1, 1) . IS unity. This completes the proof that 

n=O the imaginary part of all the eigenvalues kj for 

where the transport operator is negative, which in 

f, = j dSlP,(62 * l2’)f(Ja * W) 
turn shows that the intensity I(r, x, a, t) vanishes 
for negative x. 

4n 

= 27~ j, +J’AdfW (77) 
AC~O~~~E~~ 

We further expand g(D) in the surface harmonics 
This work was partially supported by the U.S. Govern- 

ment under contract DASA 01-67-C-0130 monitored by 
&#2), defmed by equation (18), as the 1 Defense Atomic Support Agency. 

sm = f f J%&I?nKmf~), (78) 
n=o In=-II 

1. 

where the A,,,,, are defined by equation (19) and 2. 

Qnm = IN dJZ C,P)Q(~)> (79) 
3. 

with the asterisk indicating the complex con- 
jugate. Use of equations (76) and (78) in the left 4. 
hand side of equation (74) together with the 
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RCum&L’&quation de transport appropri&e pour les calculs de transport de chaleur par rayonnement 
et tenant compte des effets de dispersion des photons est discut&e. On montre que pour des tempbatures 
et des &nergies de photon faibles (4 0,5 MeV), la dispersion des photons par un gaz maxwellien d’tlectrons 
libres peut Ire d&rite par un opCrateur diffkentiel du second ordre relativement simple. Une approxi- 
mation du type de la diffusion, employant la m&e description de la dispersion, est obtenue g partir de 
l’&quation de transport. Les aspects qualitatifs de la solution des &uations de transport et de diffusion 
sont discutks dans le cas limite d’une tempkrature 6lectronique nulle. En particulier, on montre que dans 
cette limite cette description de la dispersion donne le comportement propre seulement d’une dhroissance 
de la frbuence des photons au course de leur dispersion. Ceci contraste avec des essais antkrieurs pour 
rep&enter le processus de dispersion par un opCrateur diffbrentiel qui conduisait au rbsultat physiquement 
incorrect d’une certaine croissance de la frhuence due & la dispersion g partir des Clectrons au repos. 

Zusammenfassung-Die fiir die Berechnung des W&rmeiibergangs durch Strahlung geeignete Transport- 
gleichung, welche Effekte der Photonenstreuung einschliesst, wird diskutiert. Es wird gezeigt, dass fiir 
kleine Temperaturen und Photonenenergien (<0,5 MEV) die Streuung der Photonen eines Maxwell’schen 
Gases freier Elektronen durch einen relative einfachen Differentialoperator zweiter Ordnung beschrieben 
werden kann. Eine NLherung fiir die Diffusion, wird aus der Transportgleichung abgeleitet, wobei dieselbe 
Beschreibung der Streuung verwendet wird. Die qualitativen Aspekte der LGsung, sowohl der Transport- 
als such der Diffusionsgleichung werden Wr den Grenzfall der Elektronentemperatur null diskutiert. 
Insbesondere wird gezeigt, dass in diesem Grenzfall diese Beschreibung der Streuung das richtige Verhalten 
bei der Streuung, ntimlich nur eine Abnahme der Photonenfrequenz. angibt. 

Dies steht im Gegensatz zu friiheren Versuchen, die den Prozess der Streuung durch einen Differential- 
operator ausdriicken, wobei sich das unkorrekte Ergebnis eines Anwachsens der Frequenz ergibt, als 

Folge der Streuung an ruhenden Elektronen. 

AHHOTaqHsI--PaCCMaTpMBaeTCR YpaBHeHMe JIYYHCTO~O TeIInOO6MeHa C YUi$TOM @OTOHHOrO 

pacceBHm. IIoKa3aH0, 9~0 npn HH~KEZX TeMnepaTypax II aaepranx @OT~HOB (<< 0,5 MOB) 

paCCeFIHPie $OTOHOB MaKCBeJIJIOBCKHM ra30M CB060AHb1x 3JIeKTpOHOB MOXHO OIIMCaTb C 

IIOMOIIJbBJ OTHOCIiTeJIbHo IIpOCTOrO ~HI#~epeH~HaJIbHorO OIIepaTOpa BTOpOrO IIOpFlnKa. i'i3 

YpaBHeHHB IIepeHOCa BbIBeaeHa ~PiI$@y3HOHHaH aIIpOKcHMaUHH, TaKH(e Y9HTbIBaIO~aH 

paCCeHHHe. KOJIAqeCTBeHHbIe pe3J'JIbTaTbI peUIeHHR YpaBHeHAti IIepeHOCa II ~I449'3llPi paC- 

CMaTpPIBaIOTCH B IIpeRenbHOM CJIyYae HyJIeBOfi 3JIeKTpOHHOfi TeMIIepaTypbI. npM 3TOM 

OKa3aJIOCb,=ITO paCCeRHtre IlpllBOAHT TOJIbKO K J'MeHbIlIeHIIH, qaCTOTbl EIBJIY'IeHLIR. HpemHHe 

II~II~ITKH npeacTaBEiTb npoqecc paccemm c nouoIqbm ~~~@epeH~~anbHoro 0nepaTopa 

AaBaJIll +i$INeCKII HeBepHbIe pe3J'JIbTaTbI HeKOTOpOrO yBeJII4YeHElR YaCTOTbI 38 C'IeT 

paccemm. 


